Aufgaben zu den ganzrationalen Funktionen

- 1.0 Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen.
- 1.1 $y = x^2 + x 6$
- $1.2 \text{ y} = \text{x}^3 3\text{x}^2 + \text{x}$
- $1.3 y = (x + 4)(x^2 + x 2)$
- $1.4 \text{ y} = x^4 5x^2 + 4$
- $1.5 y = x^3 + 2x^2 13x + 10$
- $1.6 \text{ y} = \text{x}^4 2\text{x}^3 25\text{x}^2 + 50\text{x}$
- $1.7 \text{ y} = \text{x}^4 + 6\text{x}^3 + 9\text{x}^2$
- 1.8 $y = x^3 \frac{5}{2}x^2 \frac{19}{2}x + 21$
- 1.9 $y = 2x^5 2x^4 3x^3 x^2 2x$
- 1.10 $y = \frac{1}{8}(x^4 + 6x^2 + 8)$
- 2.0 Bestimmen Sie die Anzahl, Lage und Vielfachheit der Nullstellen von f_a mit $D_f = \mathbb{R}$ in Abhängigkeit vom Parameter $a \in \mathbb{R}$.
- 2.1 $f_3(x) = (x-1)(x+2)(x-a)$
- 2.2 $f_3(x) = a(x+3)(x+1)(x-a)$
- 2.3 $f_3(x) = (x-2)(x+2)(x^2-a)$
- 2.4 $f_3(x) = x(x+4)(x-3)(x^2+a)$
- 2.5 $f_3(x) = x^3 + (2-2a)x^2 4ax$
- 3.0 Geben Sie jeweils eine Funktionsgleichung an.
- 3.1 Eine ganzrationale Funktion 3. Grades mit dem Leitkoeffizienten 4 hat die Nullstellen -7, -2 und 3.
- 3.2 Eine ganzrationale Funktion 4. Grades hat den Leitkoeffizienten -1,25 und bei -1 und 9 jeweils eine doppelte Nullstelle.

- 3.3 Eine ganzrationale Funktion 4. Grades mit dem Leitkoeffizienten 1,75 hat bei 0 eine einfache und bei -2 eine dreifache Nullstelle.
- 3.4 Der Graph einer Funktion 4. Grades ist symmetrisch zur y-Achse, schneidet die x-Achse unter anderem bei -5 und 2 und schneidet die y-Achse bei 1.
- 4.0 Von einer ganzrationalen Funktion 3. Grades mit der Funktionsgleichung $f(x) = ax^3 + bx^2 + cx + d \text{ sind die folgenden Nullstellen und ein Punkt des Graphen bekannt. Geben Sie die Koeffizienten a, b, c und d an.}$

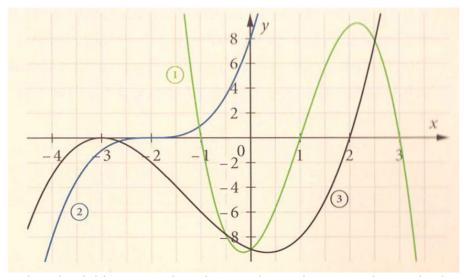
4.1
$$x_1 = -1$$
; $x_2 = 2$; $x_3 = 5$; $P(3/-16)$

4.2
$$x_1 = -3$$
 (dreifach); P(5/16)

4.3
$$x_1 = 2$$
 (zweifach); $x_2 = 1$; $P(1/8)$

5 Zu drei der fünf Funktionsgleichungen sind die Graphen abgebildet. Ordnen Sie den Graphen die passenden Gleichungen zu. Skizzieren Sie zu den verbleibenden Gleichungen die Graphen.

$$f(x) = -3x^3 + 9x^2 + 3x - 9$$
; $g(x) = 0,125x^3 - 4x^2 + 7x$;
 $h(x) = 0,5x^3 + 2x^2 - 1,5x - 9$; $i(x) = x^3 + 4$; $j(x) = (x + 2)^3$

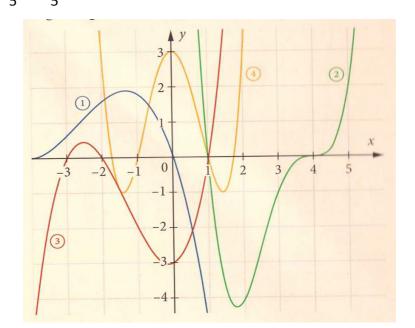


6 Ordnen Sie den abgebildeten Graphen die jeweils zugehörige Funktionsgleichung zu.

$$f(x) = 3 + 2x^{2}; \quad g(x) = 0,5(x-1)(x-4)^{3}; \quad h(x) = x^{4} - 4x^{2} + 3;$$

$$i(x) = 0,5x-1; \quad j(x) = (x-1)(x+3)(x+2); \quad k(x) = -0,2x(x+4)^{2};$$

$$I(x) = -\frac{1}{5}x^{3} - \frac{8}{5}x^{2} - \frac{16}{5}x; \quad m(x) = 0,5x^{3} + 2x^{2} + 0,5x - 3$$



7.0 Bestimmen Sie für die reelle Funktion f die Nullstellen und deren Vielfachheit. Fertigen Sie damit eine Skizze des Graphen von f an und ermitteln Sie die Lösungsmenge der angegebenen Ungleichung in der Grundmenge $\mathbb R$.

7.1
$$f(x) = x^3 \cdot (x-2)^2 \cdot (x+2)$$
 $f(x) > 0$

7.2
$$f(x) = x^4 - 4x^3 + 4x^2$$
 $f(x) \le 0$

7.3
$$f(x) = x^5 - x^4 - 5x^3 + 5x^2$$
 $f(x) \le 0$

7.4
$$f(x) = -x^4 - 2x^3 + 9x^2 + 4x$$
 $f(x) > 0$

- 8.0 Gegeben ist die Funktion f_a mit der Definitionsmenge $D_{f_a}=\mathbb{R}$ und $a\in\mathbb{R}$ durch $f_a(x)=0,5ax^4+(1+a)x^3+2x^2\,.$
- 8.1 Bestimmen Sie die Nullstellen von f_a in Abhängigkeit vom Parameter a sowie deren Vielfachheiten.
- 8.2 Berechnen Sie den Wert von a, für den der Graph von fa durch den Punkt

P(2/32) verläuft.

9 Die Funktion f_a : $y = x^3 - (3+a)x^2 + (3a-4)x + 4a$ mit $a \in \mathbb{R}$ hat bei x = 5 eine Nullstelle. Bestimmen Sie den Wert für a und alle Nullstellen der Funktion.

- 10 Gegeben sind die reellen Funktionen $f_k(x) = \frac{1}{8}x^4 + x^3 + kx^2$ mit $k \in R \land k > 0$.

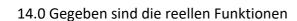
 Bestimmen Sie mit Hilfe einer geeigneten Fallunterscheidung Lage und Vielfachheit sämtlicher Nullstellen der Funktion f_k .

 (Abitur 1999 Nachtermin)
- 11 Gegeben sind die reellen Funktionen $f_a(x) = -\frac{1}{3} \Big[2x^3 3x^2 (a+2)x \Big]$ mit $a \in R$.

 Bestimmen Sie die Anzahl, Lagen und Vielfachheiten der Nullstellen der Funktion $f_a(x)$.

 Achten Sie dabei auch auf den Sonderfall a = -2.
- 12 Gegeben sind die reellen Funktionen $f_k(x) = 2k^2x 2x^3$ mit $k \in \mathbb{R}$. Bestimmen Sie die Anzahl der Nullstellen in Abhängigkeit von k.
- 13 Gegeben sind die reellen Funktionen $f_k(x) = \frac{1}{3}(x^3 2kx^2 + k^2x)$ mit $k \in \mathbb{R} \land k \ge 0$.

 Berechnen Sie die Nullstellen der Funktion f_k in Abhängigkeit von k. Geben Sie auch die zugehörigen Vielfachheiten an. (Abitur 2007 AI)



$$f_a(x) = -\frac{1}{8}x(x-a)(x-5)^2 \text{ mit } D_{f_a} = \mathbb{R} \text{ und } a \in \mathbb{R}. \text{ (Abitur 2010 AI)}$$

- 14.1 Bestimmen Sie in Abhängigkeit von a die Anzahl, Lage und Vielfachheit der Nullstellen von fa.
- 14.2 Bestimmen Sie $a \in \mathbb{R}$ so, dass der Punkt P(4/-0,5) auf dem Graphen der Funktion f_a liegt.
- 15 Gegeben sind die reellen Funktionen

$$f_a(x) = \frac{1}{9}(x-a)(x^2+3x-10) \text{ mit } D_{f_a} = \mathbb{R} \text{ und } a \in \mathbb{R} \text{ . (Abitur 2011 AI)}$$

Ermitteln Sie in Abhängigkeit von a die Lage und Vielfachheiten der Nullstellen von fa

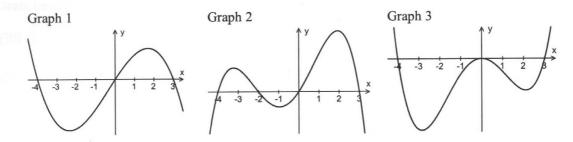
- 16 Gegeben sind die reellen Funktionen $f_a: x \mapsto \frac{1}{12} (x^3 2ax^2 + a^2x)$ mit $x, a \in \mathbb{R}$ und $a \ge 0$. (Abitur 2013 AI). Bestimmen Sie die Nullstellen von f_a und deren Vielfachheit in Abhängigkeit von a.
- 17 Gegeben sind die reellen Funktionen $f_t(x) = -(x+1)^2(x-t)$ $D_{f_t} = \mathbb{R}$ $t \in \mathbb{R}$. Bestimmen Sie die Nullstellen von f_t sowie deren Vielfachheiten in Abhängigkeit von t. (Abitur 2013 AII)
- 18 Gegeben sind die ganzrationalen Funktionen

$$f_a: x \mapsto a \cdot (x^3 + 2x^2 - 7x + 4) \text{ mit } D_{f_a} = \mathbb{R}, a \in \mathbb{R} \text{ und } a > 0.$$

Zerlegen Sie $f_a(x)$ in Linearfaktoren und geben Sie die Nullstellen der Funktion f_a mit der jeweiligen Vielfachheit an. (Abitur 2015 AII)

19.0 Gegeben sind die reellen Funktionen
$$h_t: x \mapsto \frac{1}{4}x(tx-1)(x+4)(x-3)$$
 mit $D_{h_t} = \mathbb{R}$ und $t \in \mathbb{R}$. (Abitur 2016 AI)

- 19.1 Bestimmen Sie Anzahl, Lage und Vielfachheit der Nullstellen der Funktion h_t in Abhängigkeit von t.
- 19.2 Begründen Sie, welche der im Folgenden dargestellten Graphen zur Funktionenschar ht gehören können und welche nicht. Begründen Sie jeweils Ihre Entscheidung mithilfe der ganzzahligen Nullstellen und ggf. des Grenzverhaltens bzw. des Leitkoeffizienten. Geben Sie für den Fall, dass der Graph zur Funktionenschar ht gehört, den zutreffenden Wert von t an.



- 20 Gegeben ist die Funktionenschar $g_a: x \mapsto 0,25(x^3-2ax^2)$ mit $x,a \in \mathbb{R}$. Ermitteln Sie die Nullstellen von g_a und geben Sie deren Vielfachheit in Abhängigkeit von a an. (Abitur 2016 AII)
- 21 Lösen Sie die folgende Gleichung über der Grundmenge der reellen Zahlen. (Abitur 2022 Teil 1) $x^3 2x^2 + x = 0$
- Gegeben ist die Funktion $k: x \mapsto x^5 4x^3$ mit der Definitionsmenge $D_k = IR$. Ermitteln Sie die Nullstellen der Funktion k und geben Sie ihre jeweilige Vielfachheit an. (Abitur 2025 Teil 1)

Lösungen

- 1.1 Lösungsformel \Rightarrow $x_1 = 2$ und $x_2 = -3$
- 1.2 Ausklammern und dann Lösungsformel \Rightarrow $x_1 = 0$, $x_2 = \frac{3}{2} + \frac{1}{2}\sqrt{5}$ und $x_3 = \frac{3}{2} \frac{1}{2}\sqrt{5}$
- 1.3 Lösungsformel \Rightarrow $x_1 = -4$, $x_2 = -2$ und $x_3 = 1$
- 1.4 Substitution \implies $x_1 = 1$, $x_2 = 2$, $x_3 = -1$ und $x_4 = -2$
- 1.5 Eine Lösung durch Ausprobieren ($x_1 = 1$) und dann Polynomdivision

$$\Rightarrow$$
 $(x-1)(x^2+3x-10) \Rightarrow$ Lösungsformel \Rightarrow $x_2 = -5$ und $x_3 = 2$

1.6 Ausklammern $\Rightarrow x(x^3 - 2x^2 - 25x + 50) \Rightarrow$ Lösung durch Ausprobieren $(x_2 = 2)$ und dann Polynomdivision $\Rightarrow (x^3 - 2x^2 - 25x + 50) = (x - 2)(x^2 - 25)$

$$\Rightarrow$$
 x₁ = 0, x₂ = 2, x₃ = 5 und x₄ = -5

- 1.7 $x^2(x^2 + 6x + 9)$ \Rightarrow Lösungsformel $\Rightarrow x_{1/2} = 0$ und $x_{3/4} = -3$
- 1.8 Eine Lösung durch Ausprobieren ($x_1 = 2$) und dann Polynomdivision

$$\Rightarrow$$
 $(x-2)(x^2-0.5x-10.5) \Rightarrow Lösungsformel \Rightarrow $x_1 = 2$, $x_2 = -3$ und $x_3 = 3.5$$

- 1.9 Ausklammern \Rightarrow Lösung durch Ausprobieren erraten ($x_2 = 2$) und dann Polynom-division \Rightarrow die Gleichung dritten Grades liefert wieder durch Ausprobieren eine weitere Lösung ($x_3 = -1$); führe wieder Polynomdivision durch \Rightarrow löse die entstehende quadratische Gleichung mit der Lösungsformel \Rightarrow keine weiteren reellen Nullstellen;
- 1.10 Substitution ⇒ keine reellen Nullstellen

$$(x-1)(x+2)(x-a)=0$$

 $\Rightarrow x_1 = 1$ $x_2 = -2$ $x_3 = a$
 $a=1$: zwei Nullstellen bei $x_1 = 1$ (doppelt) und bei $x_2 = -2$ (einfach)
 $a=-2$: zwei Nullstellen bei $x_1 = 1$ (einfach) und bei $x_2 = -2$ (doppelt)
 $a \in \mathbb{R} \setminus \{-2;1\}$: drei Nullstellen bei $x_1 = 1$ (einfach), bei $x_2 = -2$ (einfach)
und bei $x_3 = a$ (einfach)

$$a(x+3)(x+1)(x-a) = 0$$

$$\Rightarrow x_1 = -3 \quad x_2 = -1 \quad x_3 = a$$

$$a = -3: \text{ zwei Nullstellen bei } x_1 = -3 \text{ (doppelt) und bei } x_2 = -1 \text{ (einfach)}$$

$$a = -1: \text{ zwei Nullstellen bei } x_1 = -3 \text{ (einfach) und bei } x_2 = -1 \text{ (doppelt)}$$

$$a \in \mathbb{R} \setminus \left\{-3; -1\right\}: \text{ drei Nullstellen bei } x_1 = -3 \text{ (einfach), bei } x_2 = -1 \text{ (einfach)}$$

$$\text{und bei } x_3 = \text{a (einfach)}$$

2.3

$$(x-2)(x+2)(x^2-a)=0 \\ \Rightarrow x_1=2 \quad x_2=-2 \quad x_3=-\sqrt{a} \quad x_4=\sqrt{a} \\ a=4: \text{ zwei Nullstellen bei } x_1=2 \text{ (doppelt) und bei } x_2=-2 \text{ (doppelt)} \\ a=0: \text{ drei Nullstellen bei } x_1=2 \text{ (einfach), bei } x_2=-2 \text{ (einfach) und bei } x_3=0 \text{ (doppelt)} \\ a<0: \text{ zwei Nullstellen bei } x_1=2 \text{ (einfach) und bei } x_2=-2 \text{ (einfach)} \\ a\in\mathbb{R}^+\setminus\left\{4\right\}: \text{ vier Nullstellen bei } x_1=2 \text{ (einfach), bei } x_2=-2 \text{ (einfach), bei } x_2=-2 \text{ (einfach), bei } x_3=-\sqrt{a} \text{ (einfach) und bei } x_4=\sqrt{a} \text{ (einfach)} \\ \end{cases}$$

$$x(x+4)(x-3)(x^2+a)=0$$

$$\Rightarrow x_1=0 \quad x_2=-4 \quad x_3=3 \quad x_4=-\sqrt{-a} \quad x_5=\sqrt{-a}$$

$$a=-16: \text{ vier Nullstellen bei } x_1=-4 \text{ (doppelt), bei } x_2=0 \text{ (einfach),}$$

$$bei x_3=3 \text{ (einfach) und bei } x_4=4 \text{ (einfach)}$$

$$a=-9: \text{ vier Nullstellen bei } x_1=-4 \text{ (einfach), bei } x_2=0 \text{ (einfach),}$$

$$bei x_3=3 \text{ (doppelt) und bei } x_4=-3 \text{ (einfach)}$$

$$a=0: \text{drei Nullstellen bei } x_1=0 \text{ (dreifach), bei } x_2=-4 \text{ (einfach)}$$

$$und \text{ bei } x_3=3 \text{ (einfach)}$$

$$a>0: \text{drei Nullstellen bei } x_1=0 \text{ (einfach), bei } x_2=-4 \text{ (einfach)}$$

$$und \text{ bei } x_3=3 \text{ (einfach)}$$

$$a\in\mathbb{R}_0^-\setminus \left\{-16;-9;0\right\}: \text{ fünf Nullstellen bei } x_1=0 \text{ (einfach), bei } x_2=-4 \text{ (einfach),}$$

$$\text{bei } x_3=3 \text{ (einfach), bei } x_4=-\sqrt{-a} \text{ (einfach) und}$$

$$\text{bei } x_3=3 \text{ (einfach), bei } x_4=-\sqrt{-a} \text{ (einfach) und}$$

$$x^{3} + (2-2a)x^{2} - 4ax = 0 \implies x(x^{2} + (2-2a)x - 4a) = 0 \implies x_{1} = 0$$

$$x^{2} + (2-2a)x - 4a = 0$$

$$D = (2-2a)^{2} - 4 \cdot 1 \cdot (-4a) = 4a^{2} - 8a + 4 + 16a = 4a^{2} + 8a + 4 = (2a+2)^{2}$$

$$x_{2/3} = \frac{(2a-2) \pm (2a+2)}{2} \implies x_{2} = 2a \quad x_{3} = -2$$

$$a = 0 : \text{zwei Nullstellen bei } x_{1} = 0 \text{ (doppelt) und bei } x_{2} = -2 \text{ (einfach)}$$

$$a = -1 : \text{zwei Nullstellen bei } x_{1} = 0 \text{ (einfach) und bei } x_{2} = -2 \text{ (doppelt)}$$

$$a \in \mathbb{R} \setminus \left\{-1;0\right\} : \text{drei Nullstellen bei } x_{1} = 0 \text{ (einfach), bei } x_{2} = 2a \text{ (einfach)}$$

$$\text{und bei } x_{3} = -2 \text{ (einfach)}$$

3.1
$$f(x) = 4(x+7)(x+2)(x-3)$$

3.2
$$f(x) = -1.25(x+1)^2(x-9)^2$$

3.3
$$f(x) = 1,75x(x+2)^3$$

$$f(x) = a(x+5)(x-2)(x-5)(x+2)$$

 $P(0/1)$ einsetzen:
 $a \cdot 5 \cdot (-2) \cdot (-5) \cdot (2) = 1 \Rightarrow 100a = 1 \Rightarrow a = 0.01$
 $\Rightarrow f(x) = 0.01(x+5)(x-2)(x-5)(x+2)$

f(x) = a(x+1)(x-2)(x-5)
P(3/-16) einsetzen:
a·4·1·(-2) = -16
$$\Rightarrow$$
 -8a = -16 \Rightarrow a = 2
 \Rightarrow f(x) = 2(x+1)(x-2)(x-5) = 2x³ - 12x² + 6x + 20
 \Rightarrow a = 2 b = -12 c = 6 d = 20

4.2

$$f(x) = a(x+3)^{3}$$
P(5/16) einsetzen:

$$a \cdot 8^{3} = 16 \Rightarrow a = \frac{1}{32}$$

$$\Rightarrow f(x) = \frac{1}{32}(x+3)^{3} = \frac{1}{32}(x^{3} + 9x^{2} + 27x + 27)$$

$$\Rightarrow a = \frac{1}{32} \quad b = \frac{9}{32} \quad c = \frac{27}{32} \quad d = \frac{27}{32}$$

4.3

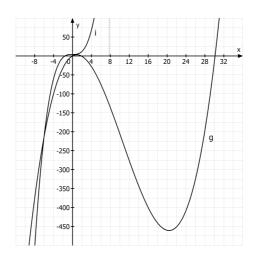
$$f(x) = a(x-1)(x-2)^2$$

P(1/8) einsetzen:
 $a \cdot 0 \cdot 1 = 8$ (f)

Es gibt keine Funktion mit den geforderten Eigenschaften.

$$f(x) = 0 \implies x_1 = 1 \quad x_2 = -1 \quad x_3 = 3$$

 $g(x) = 0 \implies x_1 = 0 \quad x_2 = 30,14 \quad x_3 = 1,86$
 $h(x) = 0 \implies x_1 = 2 \quad x_2 = -3 \text{ (doppelt)}$
 $i(x) = 0 \implies x_1 = -\sqrt[3]{4} \approx -1,59$
 $j(x) = 0 \implies x_1 = -2 \text{ (dreifach)}$
 $f(x) \implies 1 \quad j(x) \implies 2 \quad h(x) \implies 3$



$$f(x)=0 \Rightarrow \text{keine Nullstellen}$$

$$g(x) = 0 \implies x_1 = 1 \quad x_2 = 4 \text{ (dreifach)}$$

$$h(x) = 0 \implies x_1 = -1 \quad x_2 = 1 \quad x_3 = -\sqrt{3} \quad x_4 = \sqrt{3}$$

$$i(x)=0 \implies x=2$$

$$j(x) = 0 \implies x_1 = 1 \quad x_2 - 3 \quad x_3 = -2$$

$$k(x) = 0 \implies x_1 = 0 \quad x_2 = -4 \text{ (doppelt)}$$

$$I(x) = 0 \implies x_1 = 0 \quad x_2 = -4 \text{ (doppelt)}$$

$$m(x) = 0 \implies x_1 = 1 \quad x_2 = -2 \quad x_3 = -3$$

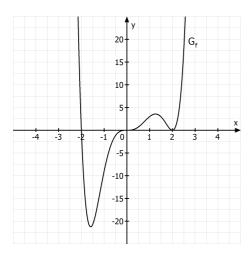
$$k(x), l(x) \Rightarrow 1$$

$$g(x) \Rightarrow 2$$

$$j(x), m(x) \Rightarrow 3$$

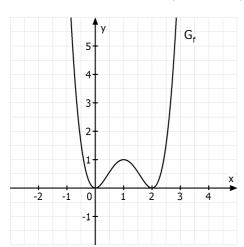
$$h(x) \Rightarrow 4$$

7.1
$$x^3 \cdot (x-2)^2 \cdot (x+2) = 0$$
 $\Rightarrow x_1 = 0$ (dreifach) $x_2 = 2$ (doppelt) $x_3 = -2$ (einfach)



$$L = \left] -\infty; -2 \right] \cup \left[0; \infty \right[$$

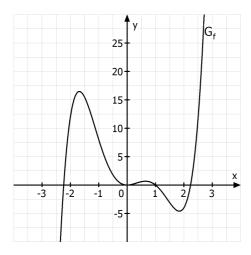
7.2
$$x^4 - 4x^3 + 4x^2 = 0$$
 $\Rightarrow x^2 \cdot (x^2 - 4x + 4) = 0$ $\Rightarrow x_1 = 0$ (doppelt) $x_2 = -2$ (doppelt)



$$L = \{0;2\}$$

$$x^{5} - x^{4} - 5x^{3} + 5x^{2} = 0 \implies x^{2} \cdot (x^{3} - x^{2} - 5x + 5) = 0 \implies x_{1} = 0 \text{ (doppelt)}$$

 $x^{3} - x^{2} - 5x + 5 = 0 \quad x_{2} = 1 \text{ (durch Probieren)}$
 $(x^{3} - x^{2} - 5x + 5) : (x - 1) = x^{2} - 5$
 $x^{2} - 5 = 0 \implies x_{3} = -\sqrt{5} \text{ (einf ach)} \qquad x_{4} = \sqrt{5} \text{ (einf ach)} \qquad x_{2} = 1 \text{ (einf ach)}$



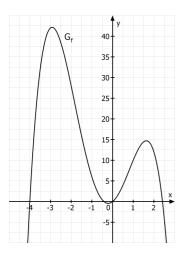
$$L = \left] -\infty; -\sqrt{5} \right] \cup \left[1; \sqrt{5} \right] \cup \left\{0\right\}$$

$$-x^{4}-2x^{3}+9x^{2}+4x=0 \Rightarrow x \cdot (-x^{3}-2x^{2}+9x+4)=0 \Rightarrow x_{1}=0 \text{ (einfach)}$$

$$-x^{3}-2x^{2}+9x+4=0 \quad x_{2}=-4 \text{ (durch Probieren)}$$

$$(-x^{3}-2x^{2}+9x+4): (x+4)=-x^{2}+2x+1$$

$$-x^{2}+2x+1=0 \Rightarrow x_{3}=1-\sqrt{2} \text{ (einfach)} \quad x_{4}=1+\sqrt{2} \text{ (einfach)} \quad x_{2}=-4 \text{ (einfach)}$$



$$L = \left| -4; 1 - \sqrt{2} \right| \cup \left| 0; 1 + \sqrt{2} \right|$$

8.1

$$0.5ax^{4} + (1+a)x^{3} + 2x^{2} = 0 \implies x^{2}(0.5ax^{2} + (1+a)x + 2) = 0 \implies x_{1/2} = 0$$

$$0.5ax^{2} + (1+a)x + 2 = 0$$

$$D = (1+a)^{2} - 4 \cdot 0.5a \cdot 2 = a^{2} + 2a + 1 - 4a = a^{2} - 2a + 1 = (a-1)^{2}$$

$$x_{3/4} = \frac{(-1-a) \pm (a-1)}{a} \implies x_{3} = -\frac{2}{a} \quad x_{4} = -2$$

a=0: zwei Nullstellen bei $x_1 = 0$ (doppelt) und bei $x_2 = -2$ (einfach) a=1: zwei Nullstellen bei $x_1 = 0$ (doppelt) und bei $x_2 = -2$ (doppelt) $a \in \mathbb{R} \setminus \left\{0;1\right\}$: drei Nullstellen bei $x_1 = 0$ (doppelt), bei $x_2 = -\frac{2}{a}$ (einfach) und bei $x_3 = -2$ (einfach)

8.2
$$0.5a \cdot 2^4 + (1+a) \cdot 2^3 + 2 \cdot 2^2 = 32 \implies 8a + 8 + 8a + 8 = 32 \implies a = 1$$

9 Einsetzen der Nullstelle \Rightarrow 0 = 5³ – (3 + a)5² + (3a – 4)5 + 4a \Rightarrow 6a = 30 \Rightarrow a = 5 Nullstellen der Funktion y = x³ –8x² + 11x + 20: x₁ = 5, x₂ = 4 und x₃ = -1

10 Nullstellen: $f_k(x) = 0$

$$\Rightarrow \frac{1}{8}x^{2}(x^{2} + 8x + 8k) = 0$$

$$x_{1/2} = 0$$

$$x_{3/4} = \frac{-8 \pm \sqrt{64 - 4 \cdot 1 \cdot 8k}}{2} = \frac{-8 \pm \sqrt{64 - 32k}}{2}$$

- 1) $64-32k=0 \Rightarrow k=2 \Rightarrow x_{1/2}=0$ (doppelte Nullstelle) $x_{3/4}=-4$ (doppelte Nullstelle)
- 2) $64-32k>0 \Rightarrow 0 < k < 2 \Rightarrow x_{1/2} = 0$ (doppelte Nullstelle)

$$x_3 = \frac{-8 + \sqrt{64 - 32k}}{2}$$
 (einfache Nullstelle)

$$x_4 = \frac{-8 - \sqrt{64 - 32k}}{2}$$
 (einfache Nullstelle)

- 3) $64-32k < 0 \implies k > 2 \implies x_{1/2} = 0$ (doppelte Nullstelle)
- 11 Nullstellen: $f_a(x) = 0$

$$\Rightarrow -\frac{1}{3} \left[2x^3 - 3x^2 - (a+2)x \right] = 0 \Rightarrow -\frac{1}{3}x \left[2x^2 - 3x - (a+2) \right] = 0$$

$$\Rightarrow x_1 = 0 \qquad 2x^2 - 3x - (a+2) = 0 \Rightarrow x_{2/3} = \frac{3 \pm \sqrt{9 - 4 \cdot 2 \cdot (-(a+2))}}{4} = \frac{3 \pm \sqrt{25 + 8a}}{4}$$

1)25+8a=0
$$\Rightarrow$$
a= $-\frac{25}{8}$: zwei Nullstellen

$$\Rightarrow$$
 x₁ = 0 (einfache Nullstelle) x₂ = $\frac{3}{4}$ (doppelte Nullstelle)

2)25+8a>0
$$\Rightarrow$$
a> $-\frac{25}{8}$ (außer a=-2): drei Nullstellen

$$\Rightarrow x_1 = 0 \text{ (einfache Nullstelle) } x_2 = \frac{3 + \sqrt{25 + 8a}}{4} \text{ (einfache Nullstelle)}$$

$$x_3 = \frac{3 - \sqrt{25 + 8a}}{4}$$
 (einfache Nullstelle)

3) 25 + 8a < 0
$$\Rightarrow$$
 a < $-\frac{25}{8}$: eine Nullstelle \Rightarrow x₁ = 0 (einf ache Nullstelle)

4)
$$a = -2 : -\frac{1}{3} \left[2x^3 - 3x^2 \right] = 0 \Rightarrow -\frac{1}{3}x^2(2x - 3) = 0 \Rightarrow \text{zwei Nullstellen}$$

$$\Rightarrow$$
 x₁ = 0 (doppelte Nullstelle) x₂ = $\frac{3}{2}$ (einfache Nullstelle)

H

12 Nullstellen: $f_k(x) = 0$

$$2k^{2}x - 2x^{3} = 0 \Rightarrow 2x(k^{2} - x^{2}) = 0$$
$$\Rightarrow x_{1} = 0 \quad k^{2} - x^{2} = 0 \Rightarrow x_{2} = k \quad x_{3} = -k$$

- 1)k = 0:eine Nullstelle bei x = 0 (dreifache Nullstelle)
- 2) $k \in R$ (außer k = 0): drei Nullstellen bei $x_1 = 0$ (einfach),

bei
$$x_2 = k$$
 (einfach) und
bei $x_3 = -k$ (einfach)

13

$$f_{k}(x) = 0$$

$$\Rightarrow \frac{1}{3}(x^{3} - 2kx^{2} + k^{2}x) = 0 \Rightarrow \frac{1}{3}x(x^{2} - 2kx + k^{2}) = 0$$

$$\Rightarrow x_{1} = 0 \qquad x^{2} - 2kx + k^{2} = 0$$

$$x_{2/3} = \frac{2k \pm \sqrt{4k^{2} - 4 \cdot 1 \cdot k^{2}}}{2} = \frac{2k \pm \sqrt{4k^{2} - 4k^{2}}}{2} = k$$

1. Fall: k=0

eine Nullstelle bei x=0 (dreifache Nullstelle)

2. Fall: $k \neq 0$

zwei Nullstellen bei $x_1 = 0$ (einfache Nullstelle) und bei $x_2 = k$ (doppelte Nullstelle)

$$\begin{split} f_a(x) &= 0 \quad \Rightarrow -\frac{1}{8}x(x-a)(x-5)^2 = 0 \\ &\Rightarrow x_1 = 0 \qquad x_2 = a \qquad x_3 = 5 \\ a &= 0 \colon f_a \text{ hat zwei Nullstellen bei } x = 0 \text{ (doppelt) und bei } x = 5 \text{ (doppelt)} \\ a &= 5 \colon f_a \text{ hat zwei Nullstellen bei } x = 0 \text{ (einfach) und bei } x = 5 \text{ (dreifach)} \\ a &\in \mathbb{R} \setminus \left\{0;5\right\} \colon f_a \text{ hat drei Nullstellen bei } x = 0 \text{ (einfach), bei } x = a \text{ (einfach)} \\ & \text{und bei } x = 5 \text{ (doppelt)} \end{split}$$

14.2
$$f_a(4) = -\frac{1}{2} \implies -\frac{1}{8} \cdot 4 \cdot (4-a) \cdot (4-5)^2 = -\frac{1}{2} \implies 4-a=1 \implies a=3$$

15

$$f_a(x)=0$$

1) $x-a=0 \Rightarrow x=a$
2) $x^2+3x-10=0$

$$\Rightarrow x_{2/3} = \frac{-3\pm\sqrt{9-4\cdot1\cdot(-10)}}{2} = \frac{-3\pm\sqrt{49}}{2} = \frac{-3\pm7}{2}$$

$$\Rightarrow x_2 = 2 \qquad x_3 = -5$$

$$\Rightarrow$$
 a = 2: f_2 hat zwei Nullstellen bei x_1 = 2 (doppelt) und x_2 = -5 (einfach)
 \Rightarrow a = -5: $f_{.5}$ hat zwei Nullstellen bei x_1 = 2 (einfach) und x_2 = -5 (doppelt)
 \Rightarrow a $\in \mathbb{R} \setminus \{-5;2\}$: f_a hat drei Nullstellen bei x_1 = a (einfach), bei x_2 = 2 (einfach)
 und bei x_3 = -5 (einfach)

16
$$f_a(x)=0 \Rightarrow \frac{1}{12} \Big(x^3 - 2ax^2 + a^2x \Big) = 0 \Rightarrow \frac{1}{12} x \Big(x^2 - 2ax + a^2 \Big)$$

$$\Rightarrow x_1 = 0 \qquad x^2 - 2ax + a^2 = 0 \Rightarrow x_{2/3} = a$$
1) $a=0$: $x=0$ (dreifache Nullstelle)
2) $a>0$: $x_1 = 0$ (einfache Nullstelle)
$$x_{2/3} = a$$
 (doppelte Nullstelle)

17
$$f_{t}(x) = -(x+1)^{2}(x-t)$$

$$f_{t}(x) = 0 \Rightarrow 1 + 1 = 0 \Rightarrow x_{1} = -1 \quad 2 + 1 = 0 \Rightarrow x_{2} = t$$

$$t = -1: f_{-1} \text{ hat eine Nullstelle bei } x = -1 \text{ (dreifach)}$$

$$t \in \mathbb{R} \setminus \left\{-1\right\}: f_{t} \text{ hat zwei Nullstellen bei } x_{1} = -1 \text{ (doppelt) und bei } x_{2} = t \text{ (einfach)}$$

$$x^{3} + 2x^{2} - 7x + 4 = 0 x_{1} = 1 (durch Probieren)$$

$$(x^{3} + 2x^{2} - 7x + 4) : (x - 1) = x^{2} + 3x - 4$$

$$x^{2} + 3x - 4 = 0 \Rightarrow (x - 1)(x + 4) = 0 \Rightarrow x_{2} = 1 x_{3} = -4$$

$$\Rightarrow f_{a}(x) = a \cdot (x - 1)^{2}(x + 4)$$

$$\Rightarrow f_{a} hat zwei Nullstellen bei x = 1 (doppelt) und bei x = -4 (einfach)$$

$$\frac{1}{4}x(tx-1)(x+4)(x-3) = 0$$

$$\Rightarrow x_1 = 0 \quad x_2 = \frac{1}{t} \quad x_3 = -4 \quad x_4 = 3$$

t = 0: h_0 hat drei Nullstellen bei $x_1 = 0$ (einfach), $x_2 = -4$ (einfach) und $x_3 = 3$ (einfach)

t = -0.25: $h_{-0.25}$ hat drei Nullstellen bei $x_1 = 0$ (einfach), $x_2 = -4$ (doppelt) und $x_3 = 3$ (einfach)

$$t = \frac{1}{3}$$
: $h_{\frac{1}{3}}$ hat drei Nullstellen bei $x_1 = 0$ (einfach), $x_2 = -4$ (einfach) und $x_3 = 3$ (doppelt)

$$t \in \mathbb{R} \setminus \left\{-0,25;0;\frac{1}{3}\right\}$$
: h_t hat vier einfache Nullstellen bei $x_1 = 0$, $x_2 = \frac{1}{t}$, $x_3 = -4$ und $x_4 = 3$

19.2

Graph 1 kann zur Funktionenschar h, gehören mit t = 0

$$\Rightarrow h_0(x) = -\frac{1}{4}x(x+4)(x-3)$$

Hoch drei Funktion mit negativem Leitkoeffizienten (kommt von oben, geht nach unten) Graph 2 kann zur Funktionenschar h_{+} gehören mit t = -0.5

Hoch vier Funktion mit negativem Leitkoeffizienten (kommt von unten, geht nach unten) Graph 3 kann nicht zur Funktionenschar h_t gehören, weil es bei Null nie eine doppelte Nullstelle geben kann.

20

$$0.25(x^3 - 2ax^2) = 0 \implies x^3 - 2ax^2 = 0 \implies x^2(x - 2a) = 0$$

 $\implies x_1 = 0 \quad x_2 = 2a$

a=0: eine Nullstelle bei x=0 (dreifach)

 $a \in \mathbb{R} \setminus \{0\}$: zwei Nullstellen bei $x_1 = 0$ (doppelt) und bei $x_2 = 2a$ (einfach)

21

$$x^{3}-2x^{2}+x=0 \Rightarrow x(x^{2}-2x+1)=0$$

$$\Rightarrow x_{1}=0 \quad x^{2}-2x+1=0 \Rightarrow (x-1)^{2}=0 \Rightarrow x_{2}=1$$

22

$$x^5 - 4x^3 = 0$$
 $\Rightarrow x^3(x^2 - 4) = 0$ $\Rightarrow x_1 = 0$ (dreifach)
 $x^2 - 4 = 0$ $\Rightarrow x^2 = 4$ $\Rightarrow x_2 = -2$ (einfach) $x_3 = 2$ (einfach)